
 1

Implementation of Pin Point Landing Vision Components 
in an FPGA System 

Arin Morfopolous, Brandon Metz, Carlos Villalpando, Larry Matthies, Navid Serrano 
Arin@jpl.nasa.gov, Brandon.metz@jpl.nasa.gov, Carlos.Villalpando@jpl.nasa.gov, Larry.H.Matthies@jpl.nasa.gov 

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 
 Navid.Serrano@adventbt.com   

 
 
Abstract— Pin-point landing is required to enable missions 
to land close, typically within 10 meters, to scientifically 
important targets in generally hazardous terrain. In Pin Point 
Landing both high accuracy and high speed estimation of 
position and orientation is needed to provide input to the 
control system to safely choose and navigate to a safe 
landing site.  A proposed algorithm called VISion aided 
Inertial NAVigation (VISINAV) has shown that the 
accuracy requirements can be met. [2][3] VISINAV was 
shown in software only, and was expected to use FPGA 
enhancements in the future to improve the computational 
speed needed for pin point landing during Entry Descent 
and Landing (EDL). Homography, feature detection and 
spatial correlation are computationally intensive parts of 
VISINAV.  Homography aligns the map image with the 
descent image so that small correlation windows can be 
used, and feature detection provides regions that spatial 
correlation can track from frame to frame in order to 
estimate vehicle motion.  On MER the image Homography, 
Feature Detection and Correlation would take 
approximately 650ms tracking 75 features between frames.  
We implemented Homography, Feature detection and 
Correlation on a Virtex 4 LX160 FPGA to run in under 
25ms while tracking 500 features to improve algorithm 
reliability and throughput. 1 2 
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1. INTRODUCTION 

 
NASA's roadmap for solar system exploration includes 
missions to the Moon, Mars, Europa, Titan, comets and 
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asteroids, which requires an accurate estimation of position 
to enable safe landing near the desired science targets.[1] 

Previous robotic lander missions have used a combination 
of inertial measurements from accelerometers and 
gyroscopes and velocity measurements from Doppler radar.  
The resulting landing ellipse is quite large because of 
uncertainty in the initial position at the start of EDL and the 
accumulation of measurement error during integration.  For 
Mars, the landing ellipse has been on the order of 100km, 
and on the Moon the landing ellipse has been on the order of 
1km.  Absolute measurement of position via GPS or similar 
satellite arrays will not be available near non-Terrestrial 
solar system bodies for the foreseeable future. 

Camera measurements can reduce the uncertainty in 
touchdown position.  Features detected from on-board 
descent imagery can be matched against prior images taken 
from orbit (Mapped Landmarks) to bound the absolute 
uncertainty, and features can be detected and tracked frame 
to frame during landing to reduce relative uncertainty 
(Feature Tracking) for position, velocity and attitude.   

These measurements would be used in addition to the 
standard array of navigation tools, and JPL's implementation 
of such a system is called VISion aided Inertial 
NAVigation, or VISINAV.  [2] 

In September of 2007 JPL showed that VISINAV could 
achieve calculated position errors under 10cm and velocity 
errors under 20cm/sec.  Tests were performed using 
parachute drops, sounding rocket launches and prior 
planetary landing sequences to show that the VISINAV 
system was robust to a large range of altitudes, attitude 
dynamics, lighting conditions and scene appearance 
changes. [3] 

VISINAV was implemented in C++, and timing 
experiments with the sounding rocket data set showed that 
more than 50 mapped landmarks could be generated in 2 
seconds and that the persistent feature tracker could track 
more than 70 features in 100 ms on a 400Mhz R12000 SGI 
O2.  At this rate the algorithm would be fast enough to 
support real-time landmark mapping and feature tracking 
during descent and landing, but a flight CPU might be 
significantly slower than the 400MHz R12000 and thus 
would not be able to hit the timing requirements desired[2].  
Additionally, 100% of the CPU may not be available for 
VISINAV to use during EDL.  Improvements were desired 
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to offload the CPU of this computationally intensive task by 
implementing key components in an on-board FPGA.  By 
shifting the heavy processing to the FPGA, we can also 
improve the robustness and precision of VISINAV by 
processing many more than 50 mapped landmarks and 70 
features. 

The implementation of VISINAV components within an 
FPGA are the focus of this paper. 

2. THE VISINAV SYSTEM  

The computationally intensive portions of the VISINAV 
algorithm lie in  

a) Feature detection  

b) Image scaling and transformation, or Homography 

c) Feature matching via a 2D spatial correlator. 

d) Feature matching via a Fast Fourier Transform (FFT). 

e) Kalman filter state updates. 

Components (a), (b) and (c) were chosen for implementation 
in an FPGA.   

Feature matching via a Fast Fourier transform has not yet 
been included because in the VISINAV algorithm it is only 
done once during the Mapped Landmark phase, regardless 
of the number of features tracked.  Nonetheless it is 
expected to be included during future development. 

Kalman filter state updates was not included for FPGA 
implementation because it did not take a significant portion 
of the total computation time and because it was less well 
suited to a parallel or pipelined implementation.   

The VISINAV system itself is extensively described in 
previous literature[4][5][6]. The only details of the 
VISINAV system described here will be the behavior of the 
components that were chosen for implementation in an 
FPGA. 

This paper will present an FPGA architecture that includes 
implementations of image Homography using bilinear 
interpolation, a feature detector using a Harris operator, and 
a 2D spatial correlator using a Normalized Cross Correlator 
(NCC), as well as the data flow for each module. 

3. FPGA SYSTEM OVERVIEW  

The development FPGA board is an Alpha Data ADM-
XRC4 containing a Virtex 4 LX160, a PCI bus interface and 
6 independent ZBT SSRAM 4MB banks.  The memory and 
PCI bus interfaces are common across this design and a 
related JPL project [7] to handle rover image processing for 
navigation. 

For the flight system we expect that we would be using a 
Rad Hard by design Virtex 5 FX130T (part 
#XQR5VFX130) and a single large bank of SDRAM, on the 
order of 512MB to 4GB.  The FPGA design supports the 
expected transition to this flight FPGA part and SDRAM 
interface. 

The key design considerations for the FPGA modules were 
maximizing speed and minimizing FPGA resource 
utilization.  FPGA resources are finite and the demands on 
resources will only grow as the flight date approaches and 
more capabilities are added. 

Each FPGA module was designed to be fully pipelined so 
that the speed will be constrained only by the speed that 
imagery can be loaded into the FPGA and by the clock 
speed of the FPGA. 

Each component- Homography, Feature detection and 
Normalized Cross Correlator (NCC)-is called an engine, and 
is started by the CPU by register reads and writes over the 
PCI bus.  Once running, each engine runs to completion and 
notifies the CPU via a PCI interrupt of its completion.  
Interactions between CPU and FPGA are kept to a 
minimum to optimize CPU idle time (and thus free for other 
tasks) and PCI bus idle time. 

Expected design conditions:  

a) 512x512 input descent imagery, grayscale, 8 bit.  

b) 2048x2048 input orbital map image. 

c) Up to 500 features detected in a single descent image. 

d) Up to 500 features used during Persistent Feature 
Tracking. 

e) 15x15 Normalized Cross Correlator template size to be 
used for matching. 

f) Input imagery will be stored in on board memory 
before use.  Each engine has sole control over the 
imagery while it is running. 

g) Minimum performance of 1Hz for VISINAV with the 
improvements in performance from the FPGA. 

Note that 500 features tracked are far greater than in the 
standard software-only version of VISINAV.  Both speed 
and performance are expected to improve as a result of the 
FPGA acceleration. 

Each FPGA block runs independently, and in the VISINAV 
algorithm only one FPGA block will need to run at a time.   
There is no advantage to running Homography and Feature 
detection simultaneously, or Feature Detection and 
Correlation simultaneously, because each subsequent 
algorithm depends on the completion of the prior. 
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Where Wx is the weight along the x-axis and Wy is the 
weight along the y axis, which corresponds with the 
fractional portion of the (x2,y2) coordinates. Figure 2 
graphically illustrates Equation 1. The dark dot represents 
the projected coordinate (x2,y2) of the rectified pixel into 
the raw image frame. 
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Figure 2: Homography bilinear interpolation example 

Note that the equation (3) and method of bilinear 
interpolation is identical with that used in Rectification in 
JPL’s Rover Navigation FPGA design [7]. The method of 
determining (x2,y2) and thus Wx and Wy are of course 
different. 
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Figure 3. Homography Block Diagram 

Figure 3 shows the data flow to accomplish the equations 
(1) (2) and (3).  The Projection Engine creates the (x2,y2) 
floating point coordinate and translates that into an integer 
Pixel Address and a fractional Wx and Wy weight.   

In State Control handles the interface with the SRAM to 
read descent image data.  It is synchronized with the 
Projection Engine block to make sure the Weights and the 
2x2 Pixel Block arrive together at the Bilinear Interpolation 
Engine.   

Out State Control handles the output to SRAM of rectified 
pixels and keeps track of when all the output pixels are 
completed. 

6. FEATURE DETECTION 

The VISINAV algorithm uses a Harris Detector to locate 
features which can be matched to the map image or to prior 
descent images.  Harris was chosen because it is efficient 
and because it generally extracts corners in textured areas of 
images which are well suited to correlation-based tracking. 

The Harris detector is fundamentally a corner detector, 
finding areas with a large derivative in x and y.  It functions 
by considering a local window in the image and determining 
the average changes of image intensity that result from 
shifting the window by a small amount in any direction 
(x,y)[10][11]. The change, E, for the small shift (x,y) can be 
concisely written as:  

 y)y)M(x,(x, = y)E(x, T

   
(4) 

Where: 
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AC
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

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
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/*/
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/*/     (5)
 

The corner response function is given as: 

)(*)( 2 MTracekMDetF 
  

(6)
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Figure 4. Harris Detector Functional Diagram 

The diagram above shows each main phase of the pipeline 
starting with the insertion of the image, pixel by pixel into 
the FPGA and resulting in F, the final score computed for 
each pixel in the image.   

There are 5 basic steps: 

1. Compute ix and iy derivatives for each pixel in the 
image. 

2. Queue five lines of the intermediate results ix*ix, 
iy*iy and ix*iy as A, B and C respectively. 

3. Weigh a 5x5 window of A, B and C by an 
equidistant Gaussian distribution and sum the 
window together. 

4. Compute the determinant and trace of M to find the 
score, F = Det – K* Tr*Tr.  K is empirically 
chosen to be 0.04 < K < 0.15 in literature [10] and 
for this implementation is 0.05. 
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5. Apply a threshold to F, so that if F is above a 
threshold then that pixel location is considered a 
valid feature.  Note the coordinate of the valid 
feature. 

The threshold is modified during run time to provide the 
correct quantity of features in the scene.  This will change 
based on the contrast and texture available in the scene.  
Too low a threshold will provide too many features to be 
processed in time. Too high a threshold provides too few 
features for good accuracy in the matching algorithms. 

After a fixed delay to fill the internal queues, a score will be 
produced after each successive clock.  Failing scores are 

discarded.  Scores that are higher than the predetermined 
threshold are recorded to SRAM.  

7. NORMALIZED CROSS CORRELATOR 

The Normalized Cross Correlator is based almost 
exclusively upon the design by Zhang and Asari[12].  Our 
implementation is a re-creation of the work described in that 
paper. 

The only customization is in the integration with the 
VISINAV system, in the interface to the memory banks, and 
in adding a maxima finder to report the highest score and its 
coordinates rather than every score across the image.   

As the core design of the Normalized Cross Correlator is 
unchanged from that of Zhang and Asari[12], only the 
custom interface and control logic will be discussed here. 

Normalized 
Cross 

Correlator

Maxima 
Finder

Template 
SRAM

Sub‐window 
coordinates

Match_x
Match_y

Reference 
Image
SRAM

PCI 
Bus

Et 

Template 
“T”

NCC_score

Score 
Threshold

Sub‐window 
“F”

 

Sequence: 

1. In software, load a 15x15 window from the 
rectified descent image around each feature that 
will be matched. Sum the intensity values across 
the 15x15 window and save as scalar EnergyT.  

Subtract the DC component over the window and 
convert to the log2 domain.  Call the resulting 
15x15 window “T”. 

2. In software, determine the sub-window of the map 
image or the prior descent image that will be 
searched for a match.  Call the coordinates of this 
subwindow “wCoord”, and the sub-window itself 
the “reference image”. 

3. Load the window T, the scalar EnergyT, and the 
sub-window coordinates wCoord to the FPGA.  

4. In the FPGA, load the sub-window “F” from the 
reference image from on board SRAM using 
wCoord and feed into the Normalized Cross 
Correlator.  The output will be an NCC score. 

5. Save the coordinates of the maximal NCC score.  If 
no score falls above a threshold then report no 
match detected. 

Although this is a fully functional system, there are several 
design limitations that reduce the benefit of the FPGA 
acceleration and unduly burden the CPU.  In this design the 
CPU is forced to compute the average and the log2 
conversion of each template before running a single 
correlation in the FPGA.  The averaging and log2 
conversion of the template could be done on the fly in the 
FPGA without significant additional resources. Also, 
additional logic could be added to run all of the correlations 
at once, each template correlated across its sub-window 
reference image, rather than a single template match at a 
time.  This would improve performance and reduce CPU 
interrupts.  These improvements will be included in the next 
version of the NCC. 

8. FUTURE AND RELATED WORK 

Much of the logic that applies to putting pin point landing 
vision algorithms into an FPGA also apply to putting rover 
navigation algorithms into an FPGA.  JPL has a significant 
body of tested, functional vision algorithms implemented in 
an FPGA for stereo vision processing for obstacle avoidance 
and is in development on visual odometry for state 
estimation. [7] 

The release of the Xilinx Virtex 5 Radiation hardened and 
space qualified XQR5VFX130 part is a major breakthrough 
for vision based FPGA design and will enable an array of 
computationally intensive tasks for space missions that 
would not have been realistic previously.   

As a comparison, the Mars Exploration Rover and the Mars 
Science Laboratory both flew FPGA’s for the camera 
control and image passing, but they were roughly 4 times 
smaller and were fully consumed by the task of doing PCI 
bus control and DMA between the on-board memory banks. 
More critically, prior mission FPGA’s have typically been 
fuse-based for radiation protection, and the Virtex 5 is 
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SRAM based but still flight qualified.  This allows for an in-
flight reprogramming capability that JPL did not previously 
use for the camera control FPGA.  This means that the same 
FPGA could handle acceleration of the VISINAV algorithm 
during EDL and then get reprogrammed to handle 
acceleration of stereo and visual odometry algorithms for 
rover navigation once on the ground.   

Full integration with the VISINAV software system has not 
yet been completed on this task- the FPGA modules were 
written with full integration in mind, but end to end testing 
has not yet been done.  Performance will need to be 
validated for both the speed and the behavior as compared 
against the software only version.  Some differences in 
results are expected; significant testing is needed to prove it 
is within a tolerable bound of accuracy. 

9. RESULTS 

The resource requirements for the Homography, Feature 
Detection and Normalized Cross Correlator are largely 
independent of image size, features tracked or image 
throughput.   

Homography and NCC resource usage are dependent only 
upon the kernel size used for the image computation.  For 
Homography kernel size is a 2x2 window and for NCC it is 
a 15x15 window.  

The Harris Detector uses slices to queue certain types of 
image data, so slices will change with image size. Roughly 
10% of slice count scales linearly with image size. 

The standard build options for 512x512 are as follows: 

FPGA Resource usage BRAM3 Slices4 
Virtex 4LX160 288 67,584
Virtex 5FX130t 576 40,960
Homography 0 4,255
Harris Detector 0 8,426
Normalized Cross Correlator 47 11,838
Complete System (incl. PCI 
bus interface etc) 47 25,556

 

Throughput performance depends on image size and the 
features tracked.  While on previous software-only 
implementations of VISINAV as few as 70 features have 
been tracked, with this FPGA enhancement the features 
tracked can be an order of magnitude higher.   

 
3
 BRAM is 18Kbit 

4
 Slice count is presented in the Virtex 4 Family’s 4 input LUT reference 

frame, not the Virtex 5 Family’s 6 input LUT reference frame for a 1-1 
comparison  

Estimated timing results (using a 32 bit, 33Mhz PCI bus and 
a 66MHz FPGA clock): 

(1) Time to transfer a 512x512 image one way: 3.6 ms 

(2) Time to perform Feature detection using Harris 
operator across descent image (512x512): 4.0ms 

(3) Time to perform Homography across descent image 
(512x512): 4.0ms 

(4) Time to perform Normalized Correlation between one 
15x15 template and a 32x32 search window: 19us 

(5) Time to perform Normalized Correlation across 500 
features:9.5 ms 

(6) Time to transfer 512x512 rectified image back: 3.6 ms 

25 ms total per frame within the FPGA. Our 1Hz target 
throughput leaves 975 ms for the CPU to perform the rest of 
VISINAV including (d) Fast Fourier Transform and (e) 
Kalman filter state updates.   

Timing testing indicates that anywhere from 1.72 seconds to 
7.32 seconds could be spent on the Fast Fourier Transform 
depending on map image size (1500x420 and 3000x840 
pixels respectively).  The FFT is thus a required addition to 
future work.  Once included, 1-5 Hz timing is anticipated.  

Timing estimates depend upon the FPGA place and route 
being able to meet a 66MHz clock requirement.  66MHz is a 
conservative clock rate- max clock rate for the current 
design is greater than 100MHz.  Once the 66MHz clock 
frequency timing is met the only variation on the 25 ms per 
frame estimate is in the PCI transfer times.  PCI transfer 
times were measured empirically from 33MHz PCI systems 
available to hand, and are conservative. 

10. SUMMARY 

Pin point landing in hazardous terrain can be made possible 
with the addition of vision algorithms such as VISINAV, 
and the use of FPGA components can reduce the 
computational load on the CPU enough to enable real flight 
missions. 

The resource requirements of Homography, Feature 
Detection and Correlation are within the limits of the 
expected flight chip, the Virtex 5 FX130.  The throughput 
expected with the use of FPGA enhancement is in the 1-5Hz 
range for Feature Tracking and 0.5 to 1Hz for Mapped 
Landmark.  Mapped Landmark would require the addition 
of a FFT FPGA component to reach the 1-5Hz range. 

The existence of similar FPGA modules being developed at 
JPL to handle rover navigation once on the ground indicate 
that the same Virtex 5 FPGA could serve multiple functions 
during difference phases of the same mission.  A common 
architecture for RAM and PCI interfaces exists to increase 
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the code re-usability between the VISINAV FPGA code and 
the rover navigation FPGA code. 
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